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We prove several theorems that lend support to Greene's criterion for the 
existence or not of invariant circles in twist maps. In particular, we show that 
some of the implications of the criterion are correct when the Aubry-Mather 
sets are smooth invariant circles or uniformly hyperbolic. We also suggest a 
simple modification that can work in the case that the Aubry-Mather sets have 
nonzero Lyapunov exponents. The latter is based on a closing lemma for sets 
with nonzero Lyapunov exponents, which may have several other applications. 
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1. I N T R O D U C T I O N  

In  a remarkable  paper, Greene (9) proposed a criterion for the existence of 

nontr iv ia l  invar ian t  circles in twist mappings.  Using it, he was able to 
compute  the critical value at which golden circles ceased to exist with 
an  accuracy that  even today is unsurpassed and  that, at the time of its 

appearance,  was almost  impossible to believe. 
The purpose of this paper  is to present some mathemat ical ly  r igorous 

results that  serve as a partial  just if icat ion of Greene 's  criterion. 
We recall that, given any n u m b e r  co, A u b r y - M a t h e r  theory establishes 

the existence of at least one set on which the mot ion  is semiconjugate to 
a ro ta t ion  of angle co in the circle. Such sets enjoy several remarkable  

properties; among  them, they are either Can to r  sets or Lipschitz circles (we 

refer to ref. 21 for a review). F r o m  the practical poin t  of view, it is quite 
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important to distinguish between these two possibilities, since an invariant 
circle is a complete barrier to long-scale transport and Cantor sets are not. 

Greene's criterion asserts that an invariant circle exists if and only if 
a certain limit is positive. We show that, if the circle exists and is analytic 
or sufficiently differentiable, the number is 0 and, moreover, the limit is 
reached exponentially ,fast. On the other hand, if we have hyperbolic sets, 
the limit is a number bigger than one. Using techniques from Pesin theory, 
we can show that if there is a possibly not smooth invariant circle or a 
Cantor set with zero Lyapunov exponent, the lim sup of a related number 
is bounded by one, and that if there is a positive Lyapunov exponent, we 
can get a subsequence converging to a positive number. 

The practical importance of Greene's criterion is that the limit is 
computed on periodic orbits which are quite easy to compute. 

There is considerable evidence that Greene's criterion is correct, at 
least in some cases. 

First there is the agreement between the quantitative values obtained 
rigorously. Recently the methods of computer-assisted proofs have been 
applied to the problem of computing the range of applicability of the KAM 
theorem. For  particular examples, there are positive results on values for 
which the theorem does apply (5'6'16'35) as well as results on values for which 
the conclusions of the theorem are false. (13'19 2o) Notice that the values in 
ref. 13 and 16 differ by about 7 % and that the value obtained by Greene's 
method is in the allowed interval. The value of ref. 13 agrees to several 
decimal places with the value of ref. 9. 

Ref. 30 and 31 introduce another method that not only establishes the 
nonexistence of invariant circles, but also that the invariant set of golden 
mean rotation is hyperbolic. Even if the implementation of the criterion in 
ref. 30 is not completely rigorous because it ignores the effects of roundoff 
error, the authors have performed a very careful analysis that makes the 
results of the paper quite close to a proof. It seems that the algorithm 
proposed is within the reach of computer-assisted proofs. The agreement of 
these numerical results with Greene's value is quite remarkable and lends 
support to the conjecture that, for the standard family, as soon as the 
invariant circle disappears, it becomes a hyperbolic invariant set. 

Besides the rigorous numerical results indicated above, there are 
arguments based on the renormalization group that lend credence to the 
Greene's method. There is considerable evidence that the phenomenon of 
breakup of invariant tori can be described for a large class of families by 
a renoemalization group picture. (26'27) (Indeed, the arguments for the 
existence of a fixed point and the linearization of the spectrum of these two 
papers are quite close to being a proof.) This renormalization group picture 
implies that all dynamical quantities have bulk properties and that to corn- 
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pute the parameter value at which a transition occurs we can use as 
indicator whatever property is more convenient to measure. (This is quite 
similar to the fact that we can measure the boiling point of water by 
examining electric or magnetic properties, density, etc.) 

The scaling properties predicted by the renormalization group for 
periodic orbits can be displayed quite dramatically in fractal  diagrams (37) 
and can be used to improve the numerical effectiveness of Greene's method 
(ref. 26, w w 

We should nevertheless point out that the renormalization group 
picture gets considerably more complicated when the families are slightly 
different from the standard one, (41'42'~4) which can be explained by saying 
that the dynamics of the renormalization operator has basins in which the 
dynamics is controlled by a more complicated landmark than a simple 
fixed point, as exhibited in refs. 26 and 27. This matter merits further 
investigation. 

In this paper, we present some rigorous results which are independent 
of the renormalization group picture, but rather use standard techniques 
from KAM and from hyperbolic perturbation theories ...... 

We consider Greene's method as part of a long tradition in mathe- 
matics of using periodic orbits, the simplest landmark that organizes the 
long-term behavior as the skeleton on which to study dynamical properties. 
Perhaps the forerunner of this approach was Poincar6 (see, e.g., ref. 34, 
Vol. I, p. 82): 

There is more: here is a fact that I have not been able to demonst~'ate 
rigorously, but that seems to me nonetheless very reasonable. Given equations 
of the form defined in no. 13 [Hamil tonian equat ion]  and a particular solution 
of these equations one can always find a periodic solution (whose period, it is 
true, can be very long) such that the difference between the two solutions may 
be as small as one wishes for as long as one wishes. Moreover, what makes these 
periodic solutions so valuable is that they are, so to speak, the only opening by 
which we may try to penetrate into a place which until now is reputed to be 
inaccessible. 

2. NOTATION A N D  S T A T E M E N T  OF RESULTS 

Let f :  T 1 x R --* T 1 x R be an analytic, area-preserving map. 
Let x ~ T 1 x R satisfy f N ( x )  = X. We say that it is a periodic orbit of 

type M/N,  N ~ N, M ~ Z if, denoting by ~ and 2 the lifts of f and x to, the 
universal cover of T 1 x R, we have ~N(yc) = )~ + (M, 0). We denote the orbit 
of a periodic point by o(x). 

For such an orbit Greene defined the "residue" by 

R(x )  = �88 - 2] (2.1) 

Greene defined the "mean residue" to be [R(x)]  l/u and observed 
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numerically that, if M i / N  i were the continued convergents of an irrational 
numer co and xi are points of type M z / N i ,  then [ R ( x i ) ] I / N i ~  p(co) and that 
p(co) > 1 when there is no invariant circle and that p(co) < 1 when there is 
an invariant circle. 

The practical importance of this criterion lies in the fact that there are 
quite efficient methods for the computation of periodic orbits. Moreover, 
by computing the residues of a significan number of periodic orbits, we can 
get an idea of the set of rotation numbers for which there is an invariant 
circle. 

We notice that 

R ( x )  = � 8 8  N -  l ( x )  ) . . . D f ( x )  ) - 2] 

so that, using the invariance of the trace under cyclic permutations, the 
residue is the same for all points in an orbit. We also emphasize that the 
residue is invariant under a C1 change of coordinates. 

Notice that the residue of a periodic orbit can be easily related to the 
eigenvalues of the derivative of the return map. Hence, it is natural that the 
Lyapunov exponents come into play when the residue grows exponentially 
fast. If one eigenvalue is )~, by the preservation of area, the other one 
should be 1/2 and the trace is ,~ + 1/2. If 2 = exp(TN), the mean residue 
should be ~ e ~ if N7 is large enough. In particular, if 7n are the Lyapunov 
exponents of orbits of period Nn and 7n ~ 7, N,  ~ oe, the mean residue 
converges to e ~ if ~ > 0. If 7 = 0, the limit of the residue could be any 
number between 0 and 1, depending on the relative rates of convergence 
of N,  and 7N' 

We recall that a number co is called Diophantine if, for every p, q e N 
we have 

bco-  P/q[ >~ K [qL--v (2.2) 

These numbers play an important role in KAM theory. We also recall 
that the convergents of the continued-fraction expansion of a number co 
satisfy Lco- P/ql <~ K /q  2, so the best exponent v we can hope to have in 
(2.2) is 2. The numbers for which it is possibly to satisfy (2.2) with v = 2 are 
called constant  type numbers  and, even if they have measure zero, they 
include all quadratic irrationals and, in particular, are dense. If we take any 
v > 2, the set of Diophantine numbers with this exponent has full measure. 

T h e o r e m  2.1. Assume that f as above admits a topologically 
nontrivial analytic invariant circle and that the motion on it is analytically 
conjugate to a rotation co such that 

l i m l s u p l o g  c o - P  = 0  (2.3) 
q<~ N 
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Then, for every k e N, we can find Ck > O, depending on of and on the 
circle, such that for every N, M such that Ico-M/Nt <~ tIN and any 
periodic point x of type M/N, we have 

N k ]R(x)I~<Ck c o -  N 

In particular, if [co- M/Nil  <~ K/(Ni)  2 (e.g., if M / N i  are the continued- 
fraction convergents to co), then lim sup IR(xi)II/N'<<. 1. 

Remark. The same method of proof establishes that if co is 
Diophantine and the circle and the map are C r, then, if x is a periodic orbit 
of type M/N, we have R(x) <<. Ck Ico- M/NI k for all k <~ k*(r), where k*(r) 
depends on the exponent v in (2.2), but k*(r) ~ o~ as r + or. 

For  Diophantine numbers, the previous result can be improved from 
the residue being smaller than any power to being exponentially small. 

T h e o r e m  2.2. Let f be as before, co as in (2.2). Assume that 

sup If(A,(p)t<<.F~oe, sup ] f - l (A ,  qo)[<<.F<~ov 
IIm ~ol < ~ IIm ~ol < ,5 

and that there is a mapping K: T 1 ~ T 1 • R with f(K(~o)) = K(cp + co) and 
that suplIm q~l <6 Ig(~0)l ~ F. 

Then, there exists a constant D > (~depend ing  on the Diophantine 
properties of the number co and the analyticity properties of the tori--such 
that for every periodic orbit x of type M/N with [co- MINI ~ 1/N 

IR(x)l ~<D e x p ( - D 5  Ico-M/NI l/l+v) (2.4) 

Remark. Notice that if M, N saturate the bounds in the 
Diophantine inequality for co, we have Ico--M/Ni<...K/N". Hence 
]RI ~< D exp( - D N  v/l+ ~). 

Remark. The fact that the residues converge exponentially fast to 
zero when there is an analytic invariant circle is one of the predictions of 
the renormalization group analysis. Notice that, when one knows that the 
convergence of a sequence to its limit is exponentially fast, it is possible to 
use Aitken extrapolation (ref. 38, w to compute the limit more effec- 
tively. This leads to more effective implementations of Greene's method. 
This idea is suggested in ref. 26, w This renormalization group analysis 
suggests that the exponent of Ico-  M/NI computed in (2.4) is not optimal. 
The problem of computing the optimal exponent in (2.4) is very similar to 
optimizing the exponent in the Nekhoroshev theorem. 
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Remark. The conclusion of Theorem 2.2 suggests that there is a rela- 
tion between the exponent of decrease of the residue and the analyticity 
domain of the circle. Unfortunately, the statement we have proved is not 
enough to conclude that. Notice that the coefficient also depends on F, 
which depends on the analyticity properties of the circle. The main reason 
to conjecture that such a relation should exist is that both of them scale 
with the renormalization group in the same way. 

We now proceed to state our results for the case in which the 
Aubry Mather sets are hyperbolic. 

T h e o r e m  2.3. Assume that F is a hyperbolic Aubry-Mather  set of 
rotation number co and that {xn} is a sequence of periodic points of type 
M n / N ,  such that o(xn) converges to F. Then, for sufficiently large n, 
IR(x.)l 1IN.> 2 > 1. Actually, if the hyperbolic set has Lyapunov exponent 
7, then lim n R ( x n )  I/N" = e ~. 

T h e o r e m  2.4. Let f be a C 2 twist mapping as above and let F be 
an Aubry-Mather  Cantor set with rotation number co r Q. If f i r  has a 
Lyapunov exponent y, then: 

(a) For  any sequence xn of periodic orbits of type M , , / N ,  converging 
to F, lim sup~ IIDfN"(x,)]I 1/Nn ~ e ~. 

(b) If 7 >0 ,  there exists a sequence of periodic points x~ of type 
M~/Nn converging to F such that limn R(xn)  ~/N" = e ~. 

Remark .  In principle, when we use Lyapunov exponents, we should 
specify with respect to which ergodic measure we take them. Nevertheless, 
as we will discuss in the proof of Theorems 2.3 and 2.4, for Aubry Mather 
sets with irrational rotation number there is only one invariant measure 
with support in the set, so that the notation is unambiguous. 

Remark .  Claim (a) is much easier to prove than claim (b). In fact, 
claim (a) is an abstract statement about uniquely ergodic systems (notice 
that it does not claim that periodic orbits exist) and, given the remarks 
about the relation of mean residue and Lyapunov exponents we made 
before, it only requires to show that lim sup 7(x,)~< 7. Claim (b), on the 
other hand, uses methods of Pesin theory and establishes the existence of 
periodic orbits. It is based on proving a shadowing lemma for sets with 
nonzero Lyapunov exponents that also controls the Lyapunov exponents. 

Remark .  Notice that in the case where F is a Cantor set, there could 
be several Aubry-Mather  sets with the same rotation number (see, e.g., 
ref. 24); hence, to verify experimentally the claim, one would have to verify 
the convergence of the approximating periodic orbits to the Cantor set. In 
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practice, if one uses the algorithm of the critical lines of ref. 9, this is not 
a problem since the periodic orbits are found on a vertical line. If one uses 
other algorithms, one has to verify that independently. In the case that F 
is an invariant circle, it is not difficult to show, using the twist condition, 
that there can be no other invariant sets with the same rotation number, 
so that part (a) of Theorem 2.4 can be improved to: 

Let Mn/Nn converge to co and let x~ be periodic orbits of type 
Mn/Nn. If there is an invariant circle of rotation number co, then 
lim sup IlDfU"(x,)ll 1INn ~ 1. 

We remark that a sketch of a method of proof of Theorems 2.1 and 2.2 
has been available for a long time. In particular, it was suggested by 
John Mather as early as 1982 (see, e.g., ref. 26, p. 1.3.2.4). Nevertheless, 
we thought it would be worth publishing a detailed account of these 
arguments, since fairly quantitative results are needed in subsequent 
numerical work by the authors. (7) 

The method we present here is optimized for computability and it does 
not require the performance of successive changes of variables. It is also 
written in such a way that it readily generalizes to higher number of 
variables or to the case when the values of some of the parameters are 
complex. The latter is used essentially in ref. 7. 

The proof of Theorem 2.3 is a standard result of the perturbation of 
hyperbolic structures. 

Theorem 2.4 is a basic result about the approximation of non- 
uniformly hyperbolic dynamical systems by periodic orbits. Except for the 
quantitative results of the Lyapunov exponent, part (b) is the main lemma 
in ref. 43. Related results appear in ref. 25. The proof we present here is 
based on a shadowing lemma for partially hyperbolic systems, which has 
other applications. The method of proof is inspired by the treatment of 
hyperbolic sets in ref. 18. 

Upper bounds for the residues similar to ours as well as a considera- 
tion of the uniformly hyperbolic cases have been proved in ref. 28 by 
different methods. 

3. P R O O F  OF THE R E S U L T S  

3.1. Proof  of  T h e o r e m  2.1 and T h e o r e m  2.2 

The basic idea in the proof of Theorem 2.1 is to show that given k ~ N, 
we can find a complex neighborhood Uk of the invariant circle F, an 
integrable mapping Ik, and a constant Ck in such a way that 

[ I f -  lkll ~ C~ dist(x, F) k 
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Then, an elementary perturbation argument would allow us to 
estimate the trace of the derivatives of orbits that stay close to the invariant 
circle. It will be a corollary of Moser's twist mapping theorem that the 
maximum distance of a periodic orbit to the invariant circle can be 
estimated--in the appropriate coordinates--by the difference between the 
rotation numbers of the orbit and the circle. 

The construction of an integrable system will be done by finding an 
approximate integral. 

It will simplify the notation to choose an appropriate system of 
coordinates. 

P r o p o s i t i o n  3.1. Let f :  T ~ • R be as in Theorem 2.1 and /~  be an 
invariant circle, f i r  analytically conjugate to a rotation ~o. Then, we can 
find a globally canonical analytic mapping h defined in a neighborhood of 
/~, with an analytic inverse in a neighborhood o f / ' ,  and such that 

ho f oh- ' (A ,  q~)= (A + A2u(A, q~), ~p + og + Av(A, ~o)) 

with u, v analytic, 

OAu 
- - ~ > ~ > 0  for IAl~<e, q ~ T  ~ 
0A 

ProoL By Birkhoffs theorem,(8'2~ we know that F is the graph of an 
analytic function 7:T1 ~ R. 

The transformation hi: T I •  R w defined by 

hi(A, cp)= (A + y(q~), cp) 

is globaly symplectic and sends the circle T ~ • {0} into the graph of 7. 
Hence, h o f o h ~  ~ leaves invariant the circle T I x  {0}. Hence 

h~ o f oh~X(A, q~)= (Au,(A, q~), v~(A, ~p)) 

Since the motion on this circle is conjugate to a rotation, there exists 
an analytic 6: T 1 ~ T ~ with an analytic inverse [hence 6'(~o) :/:0] such that 
vl(0, ~(~0)) = ~(~0 + o~). 

The transformation h2(A, ~p)=(A/6'(cp), 6(q~)) is globally canonical 
and h~ -1 oh1 o f o h ;  1 oh 2 is of the form 

(A, ~p) ~ (A', ~p') =- (Au2(A, ~o), ~o + ~o + Avz(A, q~) ) 

Since the map preserves volume, 

det (~A'/OA ~A'/~o~ 
\c3q~'/~A c3~o'/0~o) = 1 
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and since 

we should have 

A c?A'{ 
639' = 1, 
0~o =o ~q) A=0 = 0  

OA' A =1  
0A =o 

That is the form of the map claimed in Proposition 3.1. 
It is a simple calculation to show that the transformations hi, h2 

preserve the positive twist condition. Hence, the last inequality in the claim 
is established. I 

I . e m m a  3.2. Let f be as in Proposition 3.1, co Diophantine. 
Given any k e N ,  we can find analytic functions Ho(q)),..., Hk(q)) so 

that H =  Z~=o AiHi(q) ) satisfies jHo f - Hi <<. Ck + 1A k+ 1. 

ProoL We will derive a hierarchy of equatons and show that we can 
solve them recursively. 

We observe that 

H o f ( A , q ) ) = ~ ( A + A Z u ( A , q ) ) ) i H i ( q ) + c o + A v ( A , q ) ) )  (3.1) 

IVloreover, if we expand Hi(q) "4- co -4- Av(A, q))) using Taylor's formula 
in A, we obtain 

N 

Hi(q)+co+Av(A,  q)))= ~ H/(q))A~+J+C(A '+N+I) (3.2) 
i = 0  

where H~ = Hi(q) + co), HI(q)) = H;(q) + co) v(O, q)). For higher j, H / i s  
an expression involving derivatives of Hi and of v. We observe that the 
derivatives entering in H / a r e  of order up to j and that the derivatives of 
H i enter linearly. 

If we substitute (3.2) into (3.1), we obtain 

N 

Ho f (A ,  q)) = ~ Ai(Hi(q) + co) + Hi_ 1((] 3 @ co) 1J(0, q)) -q- Li(q))) 
i = 0  

+ (9(AN+ 1) (3.3) 

where Li is an expression involving Ho ..... Hi_ 2 and their derivatives of 
order up to i as well as derivatives of Hi_ I. We emphasize that Hi_ 1 only 
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enters in Li in the form of derivatives, so that, if Hi_ 1 changes by a 
constant, Li remains unaltered. 

If we equate the term of A i in (3.3) with that in the expansion for H, 
we are led for i > 0 to a hierarchy of equations of the form 

Hi(~p+co)+u(O, go)Hi_~(cp+co)+L~(q))=H~(~p) (3.4) 

We recall the following: 

P r o p o s i t i o n  3.3. Let r/: T1---~ R be an analytic function, ~xl q = 0. 
Let co be a Diophantine number. Then, there exists H: T 1---, R analytic 
satisfying 

H ( ~ + ~ ) - - H ( ~ ) = ~ ( ~ )  

Moreover, H is unique up to an additive constant. In particular, all the 
derivatives of H are uniquely determined. 

Proof. The proof of Proposition 3.3 is quite well known and is 
obtained just matching the Fourier coefficients. Details can be found, 
among other places, in ref. 1, w and ref. 39, w | 

Using Proposition 3.3, it is possible to solve all the equations in (3.4). 
We assume inductively that Ho,..., Hi 2 are determined and that Hi_ 1 

is determined up to an additive constant. Since L i depends only on 
H o ..... H i _  2 and the derivatives of H i_1, we see that Li is determined. 
Using the twist condition, we have y u(0, ~o)S0, so that it is possible to 
determine uniquely the additive constant in H i 1 by imposing 

f u(0, ~0) Hi_ 1(~0) + f L,(~o) = 0 

Using Proposition 3.3, Hi is determined up to an additive constant, so 
that we recover the induction hypothesis with i -  l replaced by i. 

The first step of the induction reduces to an obvious identity. | 

Notice that, if H is a conserved quantity, so is any function of H. 
Observe also that the curves H=h, for small ]hi, are homotopically 

nontrivial since H is a small perturbation of A. 
We can define 

B(h) = f ._h A &o 
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The function H * = / 4 ( H )  will be conserved up to O(A k+ 1) and it has 
the property that 

f Ad~p=h 

m:lc ~_ h,  

We can now define a canonical transformation in such a way that H* 
becomes the action variable. 

In effect, if we can find an S in such a way that 

OS(H*, (p) 
H* =A 

0S 
~o' = ~o + - g - ~  ( H *, ~o ) 

(3.5) 

then the transformation (A, (p) --, (H*, cp') will be canonical. 
Using the first equation of (3.5), we can determine S up to the 

addition of a function of H*. 
We can determine this additive function in such a way that 

qr O) = O. 
Expressed in the coordinates (H, ~o'), the mapping f has the form 

(H, cp') T (H, cp'+oo+HA(H))+R(H, (p') 

where IRI ~< CN HN. 
We emphasize that, since all the changes of variables are analytic, 

the estimates on the remainder remain true in a complex neighborhood 
of ( T l x { 0 } )  of the form {lIm~0't~<~, IAt~<~}. As a consequence, 
IIDR]] ~< CH N 1. Hence, 

D~(H, ( p ' ) = ( ~  IU(I))+O(HN 1) 

We notice that the trace of the derivative of a periodic point--hence 
the r e s idue -can  be computed in any system of coordinates. 

Since 

DjTN(H, (p') = DjT(j 7N- '(H, cp')) D?(j 7N 2(H, cp'))... DjT(H, cp') 

we will find it useful to estimate eigenvalues of products of matrices close 
to upper triangular. 
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L e m m a  3 .4 .  

Falcolini and de la Llave 

Let {A~}~= 1 be a set of 2 x 2 matrices of the form 

with supI<i<N lael ~ A .  
Let {Be}N=1 satisfy 

sup [(Bi)j~-(Ae)jk]<~e with e~<A 
l <~i<~N 
i lk=l ,2  

Then B = B 1 ..... B N satisfies 

ITr B - 21 ~< 21-(1 + 3 ~ x/-~) N - 1] 

ProoL Given any norm on 2-vectors, if we define IICII = 
supv~2 Ilfvll/llvll, clearly all eigenvalues of C have modulus not bigger 
than II Cll. Hence, for a 2 x 2 matrix C, Tr C ~< 2 II Cir. 

If we define Ilvll = Ivll ~ +  Iv21, then 

e l l  ~<max(IC111 +6 -1 IC211 ICzml, C211 6 +  ]C221) 
C12~ 

C21 C22] 

In particular, for matrices such as those in the hypothesis of 
Lemma 3.4 and for 6 ~ 1 

IIAill ~ 1 + lael ,~ ~ 1 + A,~ 
(3.6) 

l IAr -  Bill ~< ~ max((1 + 6-1), (1 + 6)) = ~(1 + 6-1) 

We can write 

B=---B1...BN 

= (AI +  ( B 1 - A 1 ) ) ( A 2 +  ( B a - - A z ) ) . . . ( A N +  (BN--AN))  

Expanding and grouping by the same factors (B~-Ae), we find 

B = A  1 . . . A  N 

+ Z A 1  " " A i _ I ( B e - A e )  Ae+i . . . A  N 
i 

+ Z A I " " A i _ I ( B i - A e )  A e + I ' " A j _ I ( B j - A j ) A 2 + ~  " " A N  
i,j 

+ ( B I - - A I ) . . . ( B N - - A N )  
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The trace of the first term is 2 and the trace of the other terms can be 
bounded by twice the norm. Using the estimates of the norms in (3.6) and 
bounding the norms of the products by the product of the norms of the 
factors, we can bound the residue by 

2 (1N)( I+AcS)  u J ( l + 3  'e+2(2N)(l+A6)N-2[(l+3 ' ) e ]  z 

+ +  

= 2 { [ 1 + A 3 + ( 1 + 3  1)e]N-- 1} 

If we choose 6 = (~./A) t/2, which is smaller than 1, the upper bound for the 
residue we just computed becomes 

2E(1 13 

Since e ~< A, e ~< x/A ~ and we obtain the bound in the claim of the 
lemma. | 

The next ingredient in the proof is an argument that says that periodic 
orbits of rotation number close to that of F are contained in a small strip 
near H = 0. 

Notice that, even if it is not difficult to show that most of the points 
should be close enough (otherwise the twist would force the rotation to be 
much bigger), we want the much stronger property that all the points of 
the orbit are close to the invariant circle. 

L e m m a  3.5. If ] co-M/N[  is small enough, all orbits of type M/N 
are contained in the strip 

[HI~  c o _ M  K 

where K depends only on the system and on the circle. 

Proof. By Moser's twist theorem, we can find invariant circles whose 
rotation numbers co e f2. 

Moreover, /~(f2c~ [ - -A0+co,  A +co])/2A --* 1, where /~ denotes the 
Lebesgue measure. 

It follows that if M/N is close enough to co, there are going to be 
points co' of s in [M/N, M/N+ [co--M/N[]. 

Furthermore, since the mapping that associates to a rotation number 
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the invariant circle of this rotation number is Lipschitz, the circle of 
rotation number co' is contained in 

IHl ~ Klco-co'l ~2K ~o - M  

By the twist property, the orbit of rotation number M/N has to be 
contained between the circles of rotation number co' and co. | 

Remark. Notice that the dependence of K on the system and on the 
circle is rather weak. It is, roughly, the Lipschitz constant in the mapping 
that associates to a rotation number a KAM circle when we topologize the 
circles with the C o norm. In particular, it can be chosen uniformly in a 
sufficient C5 neighborhood of the integrable case. If we know that a map 
has a sufficiently differentiable circle, it can be chosen uniformly in a C 5 
neighborhood. 

Using Lemma 3.4 and 3.5, it follows that, for every k, 

RM/N<~2[(I+CkK co_M k)N 1 ] (3.7) 

where K and Ck are the constants respectively in Lemmas 3.5 and 3.2. 
If ]co - MINI k CkKN is sufficiently small and N is sufficiently large, we 

can bound the RHS of (3.7) by 

co_ _ k 8CkK N (3.8) 

Since Ck is an arbitrary constant, multiplying it by 8 does not change any- 
thing, so that we can denote it by the same letter. This finishes the proof 
of Theorem 2.1. | 

Remark. The method carried out above can be generalized to higher 
dimensions. First, the normal form given by Proposition 3.1 can be carried 
out with the only modification that, rather than using the determinant of 
the transformation being 1, we have to use the preservation of the symplec- 
tic form. Moreover, it is possible to use an analogue of (3.4) to compute 
as many independent approximate conserved quantities as the dimension of 
the tori. We point out that an alternative approach to compute similar nor- 
mal forms can be found in ref. 40 based on the use of generating functions 
and successive transformations. Even if, from the point of view of theoreti- 
cal calculations, both methods could be used, the method explained here 
lends itself to quite efficient computer implementations, so that it should be 
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possible to obtain good estimates of the residues in concrete cases as well 
as estimates of the times of escape from neighborhoods of the tori in higher 
dimensions. 

Notice that, for any k, (3.8) produces a valid estimate of the residue. 
The proof  of Theorem 2.2 will consist only in estimating explicitly the Ck 
so that for given N, M we can choose the k that gives the best bound. 

We recall that we had to solve for H i in 

k 

Hof  = ~ (A + A2u(A, (p))i Hi(~o+oa+ Av(A, (p)) 
i = 0  

k 

= ~ AiHi(qo)+C(A g+~) (3.9) 
i = 0  

If we write 0 = (p + co + Av(A, ~o), we can write (3.9) as 

k 

HoU= ~ (A +A2u(A, O))iHi(O)) 
i = 0  

k 

= ~ A~Hi(O--co-A~(A, 0))+(9(A k+~) 
i - - 0  

(3.10) 

where ~, g are analytic functions whose domain of analyticity depends only 
on the properties of u, v. Also, ~(0, qt) > 0. 

We will assume that they are defined in a domain of the form 
{0 [ IIm(0)l ~<~5} and that their absolute values there are bounded by a 
constant K. 

If H: T 1 ~ C is an analytic function, we will denote 

IIHII.= sup tH(0)I 
[Im O[ ~ t/ 

As before, we can solve (3.10) recursively. Expanding both sides in 
powers of A and equating the factors of A i, we obtain 

Hi(O)+Hi_l(O)u(O,~)+L~(O)=Hi(O-o.))+L2(O) (3.11) 

where, as before, L), L~ are expressions involving Ho ..... Hi 2 and their 
derivatives and the derivatives of H i_ l- 

The procedure to solve (3.11) is very similar to the one that we used 
in the proof  of Theorem 2.1. 

We assume inductively that Ho ..... Hi 2 are determined completely 

822/67/'3-4-13 
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and that Hi 1 is determined up to an additive constant. Then, we deter- 
mine the additive constant in Hi_ t in such a way that 

f (H,_~ u(O, ~o) + L ] { ~ o ) -  L~({o)) de = 0 

Then, using Proposition 3.3, we can determine Hi up to a constant. 
We denote Hi = S Hi(O) dO and/Tr+(0 ) = Hi(O) - Eri. 

Lemma 3.6. Equations (3.11) can be solved recursively. For co 
Diophantine, if 6 - kt /> 0, we have 

II Dill ~ - i t  1 ~ E(D)i 

tRil <~ E ( D )  i 
(3.12) 

where D is a number of the form D=K~/ 1-v and K depends on the 
system but can be taken uniformly in a J[-[[6 neighborhood. Similarly for E. 

Proof.  The quantitative statements in (3.12) will be obtained by 
estimating all the steps in the above construction. 

We recall that, by definition, 

i 1 ( 6 ~ )  j A L2((t9) =j21~T..: . --~ Hi_ j (O -- co - Ag(A,  0)) :0  

If we denote 

we can bound 

K =  sup Ig(A, O)l 
IA[ <~ 6 

IIm(0)l ~< 

sup 
IAI ~< q/RK 

tim(0)[ ~< 6 (i 1/2)rl 

IHi_ / (O - co - Au(a ,  0))l 

IIHe_jlI~ (i-1/2)~1+1/2~ ~ IrHe_jll~_jo 

Using Cauchy estimates in the variable A, we obtain that 

sup --~ H ~ _ j ( O -  c o -  Ag(A,  0)) 
IIm(0)l ~< 6 -  ( i -  1/2)~ 

~< IIHi_~II~ +. ~ +(2KF 

= 0  
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Hence, if we substitute the induction hypothesis, we obtain that 

IIL~[I+ ~,~+./2~ < ~ ED i- j  
j = l  

= D i-1 E--jrl2K ~_ 1 \D~]j?2K~S-1 <~ Di 1E4K-rl 

Similarly, we can obtain bounds for L~. We observe that 

L ~ ( O ) = ~  1 ( ~ 3 )  s (A+Au(A,O))  s 
j:2/-/ '-J J~ ~-J ~=o 

We can estimate the derivatives using Cauchy estimates to obtain 

- -  

when [Im(0)l ~ 6. Hence, 

IIL]ll6 i~+v2n<~J =2~D~-j ~ Di l 

Since [q/~-~iLl~ i,7 < ~ D i - i ,  w e  see that we can determine Er 1 and 
that it satisfies 

IBi-ll ~R/~ 

where K depends only on the suprema of ~ and ~ and can be chosen 
uniformly, as r/is arbitrarily small. 

We can now apply a quantitative version of Proposition 3.3 that is 
proved in the same references quoted before. 

Lernma 3.7. Let co satisfy (2.2). Then, for every L: T 1 ~-~ C analytic, 
satisfying ~ L(O) dO = 0, we can find a unique H: T ~ C satisfying 

H(O) - H(O + co) = L(O) 

f H(O) dO = 0 

Moreover, for any r/> 0 we have 

I IHll~_,~O/ v IILll~ 

Applying Lemma 3.7, we obtain ]l B, II ~_ ,, ~ Di l ~ y ]  - 1 - v 

So, we see that the induction hypothesis are recovered. 
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To conclude the proof  of Theorem 2.2, we just observe that if we 
perform k operations, we can take t/ as big as &/2k and still satisfy the 
condition that & - k t />  0. 

We also observe that the same argument that we used to bound 
L~(O) + He xu(O, O)- L~(O) serves to bound the ith derivative with respect 
to A of Hof- -H in a complex neighborhood for A. 

In the notation of Theorem 2.1, we have established that Ck~< 

An elementary computat ion of maxima shows that for a positive 
number B, 

max(k) k(~+v) B k k  

is reached when 

1 
log k - 

l + v  
- -  (log B +  1 + v ) + l o g  6 

and takes the value 

e x p [ - ( 1  + v ) ]  B l/(l+v) (~e-1 

This establishes the desired result when we take B = l eo -M/N[  K. | 

4. P R O O F  OF  T H E O R E M  2.3 

The proof  of Theorem 2.3 is a perturbation theory for hyperbolic 
structures. 

We recall the following result. 

D e f i n i t i o n  4.1. We say that a closed set f2 ~ M is a hyperbolic set 
for f : M ~ M  if ff2 = f2. We can find C > 0 ,  2 <  1, and a splitting TxM= 
E s �9 Ex" such that 

IIDfn(x)vll<~C;<llvll if n>~O, veE s 

I IDf ' (x)v l l  <~C;~ n Ilvl/ if n~O, veE~ 

Remark. It follows from the definition that the subspaces E~, E~ are 
uniquely determined and that Df(x)(ES~)= E)(x), Df(x)(E~)= E~(x). 

Moreover, the mapping x -~ E~, x ~ E~ are continuous. 
The following result is stated and proved in ref. 17. 
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Lemma 4.2. Let Q be a closed hyperbolic set, and •' be an 
invariant set contained in a sufficiently small neighborhood of ~. Then, 
(2 ku f2' is a hyperbolic set and it is possible to extend the bundles E~, E~ 
to f~' in such a way that Definition 4.1 is satisfied for some other 2. If the 
neighborhood of f2 containing s'?' is small enough, then 2 can be chosen as 
close as desired to that on s 

For a periodic point x of period N, the remark after Definition 4.1 
implies that 

IIDf'W(x) 141/~< C~. Ni 

IIDf Ni(x) IL;Ir -4< C)+ N '  

This implies, by the spectral radius formula, that all eigenvalues of 
D f N ( x )  I g x have modulus less than 2 N and that all eigenvalues of 
D f N ( x )  I~ have modulus bigger than 2 N. 

Therefore, IR(x)l >~ - 2  N - -  2 - 2-~". 
To prove that the Lyapunov exponents of the periodic orbit converge 

to those of the set, we refer to the proof of a similar statement in the proof 
of Theorem 2.4. | 

4.1. P r o o f  o f  T h e o r e m  2.4 

The two claims of Theorem 2.4 are general results about limit proper- 
ties of Lyapunov exponents. Claim (a), which is much easier, is a statement 
about Lyapunov exponents of uniquely ergodic measures. 

We recall that a mapping defined on a set is called uniquely ergodic 
if it leaves invariant only one measure. 

It is well known (see, e.g., ref. 44, p. 138) that an irrational rotation on 
the circle leaves invariant the standard Lebesgue measure and no other, so 
it is a uniquely ergodic system. 

Since the motion on an Aubry-Mather  Cantor set is semiconjugate to 
a rotation, that is, we can find a continuous h: F~-+T such that h o f l r  = 
h o R~, we see that the only measure defined on F, invariant under f ,  is the 
pullback under h of the Lebesgue measure on the circle. We will denote 
such a measure by hr. 

The fact that Aubry-Mather  sets are uniquely ergodic justifies 
speaking of the Lyapunov exponent of the set without specifying explicitly 
the ergodic invariant measure with respect to which they are considered. 

If O(X,)=--{xn, f ( x n ) , . . . , f  u" l(Xn) } is an orbit of period Nn, the 
measure that assigns weight 1INn to each of the points in the orbit is 
invariant under f .  We will denote such a measure by 6o(xo). 
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Given a sequence of orbits {o(x,)},~ o converging to F, by the 
Banach-Alaoglu theorem, we can extract a subsequence {o(x,,)} such that 
the measures 6o(xn,) converge to a measure ~5oo. Since each of the measures 
is invariant, 

f *  f o(x,,) = 6 o(x,? 

and the pullback is continuous in the weak-* topology, we conclude that 
the f * 6 ~  = 6~. On the other hand, it is easy to see that 6~ has support 
in F. By the unique ergodicity discussed before, we conclude that 6~ = fir. 

We also recall that the largest Lyapunov exponents of an ergodic 
measure are upper semicontinuous with respect to the ergodic invariant 
measures. 

This can be easily seen by noticing that the largest Lyapunov expo- 
nent is computed by appealing to the subaddith;e ergodic theorem (see, e.g., 
ref. 36, p. 30). If we denote by ?(f, #) the Lyapunov exponent of a measure 
# ergodic for f ,  we have 

7(f,/~) = lim _ln log IIDf~(x)ll d/4x) = inf~ log IIDf"(x)tl d~(x) (4.1) 

If we denote 

7,(f,  kt) = _1 f log llOYd(x) du(x) 

we have ?n(f, #i) ~ ~(f, /'~i)" Taking lim supi on both sides of the inequality, 
we obtain lira sup/vn(f, #i) >~ lim supi 7(f, Pi). Since log IlDf"(x)l[ is a 
continuous function and Pi converges weakly to #, we have 7,(f, ~)~> 
lim supi v(f, #~). Taking inf, on both sides, we obtain the desired result. 
This finishes the proof of claim (a) of Theorem 2.4. We emphasize that the 
proof works word for word for any set on which the motion is uniquely 
ergodic. 

The proof of claim (b) is much more complicated. It will be a trivial 
consequence of the following theorem, which we state in full generality, 
since it can be applied in other contexts. 

Theorem 4.3. Let f : M ~ - + M  be a C 2 diffeomorphism leaving 
invariant the ergodic measure #. Assume that, with respect to this measure, 
f has no zero Lyapunov exponents. Then, for almost every point x0 in the 
support of #, it is possible to find a sequence {xn}~=o of periodic points 
which converge to Xo. Moreover, the sequence of orbits can be chosen in 
such a way that the Lyapunov exponents of x n converge to the Lyapunov 
exponents of Xo. 
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Remark. Results similar to Theorem4.3 appear in ref. 44 (see 
Theorem 4.1) and ref. 25. They are usually called ergodic closing lemmas. 

Proof. The proof we present here, like the proofs above, will rely on 
a shadowing lemma for partially hyperbolic orbits. 

The argument will start by proving a constructive version of a 
shadowing lemma and then we will show that partially hyperbolic systems 
satisfy the hypothesis. We emphasize that the version of the shadowing 
lemma we prove does not assume any global hyperbolic properties of the 
dynamical system, but only hyperbolicity properties of the pseudo-orbit 
considered. Such statements are useful in other contexts. For  example, they 
are useful when one wants to verify rigorously that near a computed 
periodic orbit there is a true orbit. In that case, even if one has the 
approximate orbit quite explicitly, one does not have much control about 
the global properties of the dynamical system. 

We will prove the shadowing lemma by systematically analyzing 
sequences of orbits. We will adopt the convention of denoting sequences in 
boldface and their components by the same letter with a subindex. 

Def ini t ion 4.4. Let M be a manifold and f : M ~ M  be a dif- 
feomorphism. We say that a sequence {xn}~= _co is an e-pseudo-orbit if 
d(x~, f(xe_l))~< e. This is equivalent to saying that we can find mappings 
g~ defined in a neighborhood U~ of x~ in such a way that ge(x~)=x~_l, 
[I f -  g/ll cO ~< e. 

Definition 4.5. We say that an s-pseudo-orbit is e-pseudohyper- 
bolic if we can find a decomposition T - E  s (~E u and mappings gi xi - -  - - x ~  ~ x i 

defined in neighborhoods Ui of xi and such that: 

(i) 

(ii) 

(iii) 

gi(xi)=xi_l. 
II f - -  gill c~ ~< e. 
The following hold: 

IlVg~+~(x~+.) Dgi+n_ ,(xt+~ 1)""  Vg~(xi)l] 

<~ C 2  n IIvII if n>O, v s E~ 

II Dgi-ln(xi- n )  Dg~--ln +1 ( x i  n +1 ) ' ' "  Dgs I(Xi)[I 

~<c,~" [Ivll if n>O,  veEr_. 

We will refer to e, C, and 2 above as the parameters of hyperbolicity. 
X oo If x - { n } n = ~ is a sequence, we can pick neighborhoods Ui around 
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x i and choose coordinate systems ~i: Ui ~ R a in such a way that the coor- 
dinate mappings are uniformly C a and that qSi(x~)=0. [A geometrically 
natural way of doing this is using the exponential mapping of Riemannian 
geometry ~ i ( y )  = expxil(y).] 

If we define ~,. - ~i  + 1 ~ gi ~ ~ -  ~, ~- -= q~ + 1 ~ 1 7 6  q~7 i, they are mappings 
mapping a neighborhood of 0 E R ~ to another neighborhood of 0 e  R a. 
Moreover, ~ ( 0 )  = 0. 

Following ref. 18, we consider the space Z = { y s ( R d ) N l s u p g l y ~ I  
< ov }. Clearly, Z is a Banach space under the norm [[yl[-= sup, ]y,]. Notice 
that, for some 6 > 0, [[y[] ~< 6 implies that yi~ ~(U~). 

On a sufficiently small neighborhood of 0, we can define the operators 
.fy by ~(y)~  = f~_ ~(yi_~ ). 

Notice that J f ( y ) = y  if and only if {~b~l(y~))9= _~ is an orbit for f 
and that y is an e-pseudo-orbit if and only if K ~e IlY--(y)-yll ~< Ke, where 
K is a bound on the derivatives of ~b~ and q~,:-x. 

P r o p o s i t i o n  4.6. If f is uniformly differentiable, then 3- is 
differentiable in a neighborhood of the origin and we have 

[DY--(x)a],=Df, l(X, 1)a,_1 

I f f  is uniformly C 2, then Y is C 2 and we can bound HD2Y-(x)II uniformly 
in a neighborhood of the origin. 

ProoL To establish the first claim, we just have to bound 

I IY(x  + a )  - y - ( x )  - O J ( x ) a l l  (4.2) 

and show that it converges to zero with I[all faster than Ilall. 
We recall that f is uniformly differentiable if one can find an 

increasing function q: R + ~--,R + with ~/(0)=0 and lim,~o ~l(t)/t=O such 
that j f ( x  + a) - f ( x )  - Of(x)al <~ ~/(lal ). If the function f that we used to 
construct J f  is uniformly differentiable--this is automatic if the manifold is 
compact or if f has uniformly continuous first derivatives--using the fact 
that the mappings q~ and their inverses have uniformly continuous 
derivatives, we conclude that for some r/: R + ~ R § increasing and r/(0)= 0, 
we have 

I f~ (x+a)- f~(x ) -Df~(x )a~  11 ~<q(la~-ll) 

Using the definition of the norm, the quantity (4.2) that we have to 
estimate is just 

sup [[fn--l(Xn--1 + a n _ x ) - - f , - l ( X , - 1 ) - - D f n - l ( X , - l )  a~-ll[ 
n 
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Using the uniform differentiability, we obtain that this can be bounded by 

supq(la._~l)~<r/(sup la. al)=r/(ilall) 
n 

which is what we wanted to establish. 
The argument for the second derivative is very similar and we leave 

the details to the reader. I 

The following lemma provides us with a characterization of the hyper- 
bolicity of orbits by properties of the derivative of the operator Jj. at x. 

Their usefulness comes from the fact that they allow us to prove 
properties that are true for whole orbits--uniformly on the t ime--by doing 
soft analysis on the operator Jf .  They are nonautonomous versions of the 
characterizations in ref. 22 and the proofs are actually quite similar. We 
point out that property (i) will not be used in this paper, but we included 
it because it fits nicely in the circle of ideas discussed here. Since the 
spectral theory on Banach spaces is much more natural on complex spaces, 
we will consider Z the natural complexification of S. We leave to the reader 
the elementary task of checking that, when the problem considered has real 
data, the results are real. 

[ . e mm a  4.7. Let x be a fixed point of ~ as before. Then: 

(i) The spectrum of D ~ ( x )  is invariant under rotations, i.e., 

z e spec(DJ~f(x)) ~ V0 ~ R, e i~ �9 spec(D.Yf(x)) 

(ii) Assume that for 0 < # _  </~+ 

spec(DJ)r(x)) n {z~C  [ #_  ~< ]z[ ~<#+ } = 

Then, we 

(a) 

(b) 

(c) 

(iii) 
(iia)-(iic) 

can find a sequence of subspaces E~ > ], E~ < 1 in such a way that 

R d = E [ > 1 0 E [ < 3  
angle(E/E > 1, E/E < 3 ) >/c~ > 0 

IIDfi+,,(Xi+m),..., Dfi(xi) IE~<ll[ <~ C/~+ 
IlDf [--lm(xi m) ..... D f  ?l(xi)  le[>~l[ < C# -m 

Df,.(xi) Ei F < 1 = Ei~+~ 
Dfi(x~) E~ >] = E[+~ 

Conversely, if we can find E~ > l, E~ < 1, C, # +, and #_ satisfying 
as before, then 

spec(DYf(x)) c~ {z~C ] ~t_ ~< [z] ~</~+} = ~  
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Proo f .  To prove (i), we recall that a number z e C is in the spectrum 
of (DYf(x)) if and only if there exists a sequence {vn}~__o, IIv.II = l, 
lim. I lD~(x)  v~ - zv~ll = O. 

So, to prove the theorem, it suffices to show that if we have v ~ Z such 
that I I D ~ ( x ) v - z v l l  ~< e, we can find w with 

I]DYs(x)w - zei~ <~ 

Expressed in components, the hypothesis means that 

[Df,-(xi) v i - z v i + l l  <~e, sup Ivil = 1 

If we set w n = e  ni~ w e h a v e  

sup Iw.I = sup Iv.I = 1 
rt n 

sup [Df . (x~)  wn - ze i~  + 1[ = sup tein~ v .  - z %  + 131 -- 
el 

This finishes the proof of (i). 
To prove (ii), we observe that, by the spectral theorem on Banach 

spaces, we can find a Z = Z E<2 • Z ~>l invariant under D ~ ( x )  in such a 
way that 

spec (D~(x )  IzE<l) c { z e C  I lzj ~<#_} 
(4.3) 

s p e c ( D ~ ( x ) - '  Ix[>l)c {z~C I Izl ~<~+'} 

We also recall that another corollary of the spectral theorem is that 

v~ZE<]<=> lim ][[D~(x)]"v][1/"~</~_ 
n ~ o o  

<~Vn [I [ O ~ ( x ) ]  n vii ~< C~"  Ilvll 
(4.4) 

v s z C > l r  lira I I [D~.(x)] -"vl l l /"~<#+ 1 

< * V n ~ N l l r D ~ ( x ) ] - n v H  ~<C/~ Ilvll 

where, in the second characterization, we understand implicitly that 
v z D o m ( D ~ ( x ) )  " 

Both characterizations say roughly that v z z  E<3 if iterates of D ~  
decrease faster than an exponential rate /~ . Notice that the two precise 
definitions of "exponential of rate / ~ "  are not equivalent in general, the 
first one being weaker even for one vector (notice that C in the second 
characterization is independent of the vector). The proof of (4.4) uses 
essentially the spectral properties of D ~ ( x )  we assumed. 
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We want to prove that  Z L<] is of the form 

that is, whether  v belongs or not  to the space Z [<3 can be ascertained by 
testing successively the components .  This will be true basically because to 
compute  one coordinate  of D ~ ( x ) v ,  we only need to know one component  
ofv.  

Proposition 4.8 .  The vector v e z  belongs to Z E<1 if and only if, 
for every i, the vector v i -  ( .... 0,..., vi, 0,..., O,.. .)eg E<3. 

Proof. We will use (4.4) to prove both  implications. We have 

I[ [D~-}(x)]" vii] = [Dr,+ ~(x~+. ) . . -Df i (x l )  vii 

i ( [ D J f ( x ) ] "  v);+nl < [ / [ a ~ ( x ) ]  ~ vii ~< C#"_ Ilvll 

To  prove the if part, 

II [ D ~ f ( x ) ]  ~ xll = sup I ( [ D ~ ( x ) ]  n v) i+ . l  

= sup I1 [ D ~ ( x ) ] "  vql 
i 

~< sup Cg ~_ I[v,l[ = C F '  Ilvll 
i 

Hence, we can define 

E}<n= { v e R d l  ( .... 0 ..... O,v,O ..... O,...)eZ E<a} 

Since 

~ ( x ) ( . . . ,  o ..... o, v, o,..., o , . . . )=  ( .... o ..... 0, o, Df,(x3v,..., 0,._) 

we see that v e E i E < 2 , ~ D f i ( x i ) e E ~ + l  3. So that  (iic) of Lemma4 .7  is 
established. 

To  prove (iib), we observe that 

I I [ ~ - ( x ) ] " (  . . . .  0 . . . . .  O , v , O , . . . , O  ..... 0)11 

= I1( .... O,...,O,O, Df~+,(x ,+, )Df ,+,_~(x~+,  ~)...Df,.(x~)v,O,...)ll 

= [Df i+. (x i+. . . -  Df,-(xi)vl 

<~ c~?+ I1( .... o ..... o, v, o,..., o)11 

= c ~  Ivl 

Analogous arguments  and definitions work for Z [> 3. 
'To prove (a), we observe that  clearly E} <3, E~ >3 are closed linear 
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spaces. Moreover ,  their intersection is {0}, since the intersection of Z E> l, 
Z ~ < 1 is the null vector. If there was a vector v e R a, v ~ EiE < 1 | E f  > 1, we see 
that  the vector ( .... 0,..., 0, v, 0,..., 0 ) e Z E < 1 @ Z  E>l 

To  prove (a), we observe that if we could find a vector w e R ~, then 
w6ef<1@E~ <J. 

To show that the angle between spaces is bounded from below, we 
recall that as a consequence of the spectral theorem,/7 E < 2 and/7 E > J, the 
spectral projections onto Z E<] and Z E>l, are bounded. 

By Proposition 4.8, 

HE<J( .... vi, vi+ , .... ) = (  .... zr~ < lvi ,  zcE > ]v - ,...) i + 1  z + l  

where ~{<? and ~ > 1  are the projections associated with the decomposi-  
t ion R d = E~ > j @ E~ > 1. Since the spectral projections ~E< 1 and ~E> 1 are 
bounded,  we have 

I~< lv l  -- l iNE<l(  .... 0,..., 0, v, 0,..., 0)N 

~< I lgc<JI l"  I[(..., 0,..., 0, v, 0 ..... 0,...)ll 

= IIHE<]011 �9 Ivl 

A similar argument  shows I~>~vl ~< IIg~>lll .  lvl. Hence, I1~<111 and 
II~>JII are bounded  independently of i. This is equivalent to saying that 
the angle between E} < ] and E} > J is uniformly bounded from below. 

This finishes the proof  of (ii) of Proposi t ion 4.8. 
To prove (iii), it suffices to show that the equat ion 

D ~ ( x ) v  - zv  = w (4 .5 )  

can be solved in v for any w,/~ < [zl < # +  and that  I[vll ~ C  Ilwll. 
Taking components ,  (4.5) is equivalent to 

D f i ( x i )  v i -  zv ,+ ~ = wi+ 1 (4.6) 

If zrf <1 and n~>l are the projections associated with the splitting 
R a = E f  < 1 + E f  > 1, (iia) implies 

Df, . (x , )  7~f <J = 7~f+]~Df,.(x~) 

n L ( x , )  . f  > l = u f + ?  n f , . (x~)  

Hence, decomposing into the components  along E~+]  and E~+I 1, we 
obtain that (4.6) is equivalent to 

Df, . (x i )  z~  < lv i -  zTc~lJVi+ l ~, E< J,,, ~ ' ~ i + i  r V i + l  
(4.7) 

= ",r [ > 1,*~ Df,(x,) rcf > Jv,  - zx~i~  ]l Di+ , , v i +  1 v , , l +  1 
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We claim that these two equations can be solved by setting 

z c  - -  1 

1,,[<],,, ~0ZT~r [Df,-(xi) . .Df,_/xi_j) ] ~[<.lw. �9 T C / [ ~ P U i  + I = z , ~ i + l V V i + l  , = j , j  
j =  

~[>l,,  = ~ zJ{EDf,-(x,)] - '  . . D f i . / ( x , . j ) - ' }  ,,~>l ,,, i + 1 ~ i + 1  �9 . ~ i +  1 +j  ~vi+ l +j  
/ = 0  

In effect, we see that, using (iib), 

~7T E Df ,(x,) " 
1 

C #  J 
~<T T II~E<lll !lwll 

and analogously for the other equation 

]zg{ [Dfi(xi)] - ' " "  [Dfi+j(x,+j)] -1} 7cEi+]+l Wi+y+l ] 

~< c II~E>31/�9 Ilwll 

(4.8) 

Hence, the two series in (4.8) converge uniformly and, by rearranging 
terms, it is easy to verify that they indeed are solutions. 

Moreover, since the right-hand sides of (4.8) have norms that can be 
bounded by C Ilwll independently of i, we see that the sum will also be 
bounded in the same form, hence z is in the resolvent. This finishes the 
proof of Lemma4.7. I 

l_omma 4.9. Let Y- be a C 2 function on a Banach space X, x e ii. 
Let M be a linear operator on X. Assume 

ItY(x)-x]l ~<8 
[IDC-(x)-Mll  ~ A  

II(M-I) ~ll~<B 

IID2y(y)IF ~< C if I[x-yll ~<p 

Then, if 

K=AB+B<~p<I 

8 + K p < p  
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there is one fixed point x* of Y- in the set {Y l l l y - x [ [  <~p}. Moreover, 
[Ix - x* II ~< e/1 - K. 

Proof. Consider 

~/,(y) = - ( M - -  I) ~ [3-(y)  -- y]  + y 

A simple calculation shows that a fixed point of q~ is also a fixed point 
of Y-. 

Moreover, ~b is twice differentiable and we have 

D(P(y) = - ( M -  I)  1 [ -D~-(y)  - I ]  -]- I 

= - ( M - - I )  1 { M - I +  [ D J - ( x ) -  M]  + [ D 3 - ( y ) - D Y ( x ) ]  } + I  

= - ( M  - I) -~ [ O Y ( x )  - M]  - ( M -  1)-1 [D~-(y)  - D~-(x)]  

If we bound the first term using the second part of (i) and the second 
term by the mean value theorem, we obtain 

IID~(y)[t ~< AB + B <~ p 

Hence, ~ is a contraction in the ball around x of radius p. The second 
inequality implies that this ball is mapped into itself. From that, we can 
apply the elementary argument for the contraction mapping principle. ] 

We also recall some facts from the theory of nonuniformly hyperbolic 
systems. Our ultimate goal is to show that, for systems with positive 
Lyapunov exponents, we can construct pseudo-orbits with approximate 
inverses such that Lemma 4.9 applies. 

T h e o r e m  4.10. Let g be Borel measure invariant under f .  Then, 
for g-almost all x, we have: 

with 

(i) TxM= | 

(ii) if v e E,. 

lim l_log ]Df"(x)v[ = lim 1 log [Df-"xv[ = ;ti(x ) 

(iii) Au(x), the angle between Ei(x) and Ei(j), i # j ,  satisfies 

Au(fn(x)) >~ e-I< ~(x) C~(x) 

for some measurable function C~(x)r 0. 
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Proof. There are several proofs of this theorem in the literature. The 
original one is in ref. 29. A more modern one can be found in ref. 36. There, 
(iii) is proved explicitly as Corollary 3.3. 

Notice that 2 i ( f ( x ) ) =  2~(x). Hence, if/~ is ergodic under f ,  2~ is a 
constant. Also, Df (x )E i ( x )=E~( f ( x ) ) .  Once we have these results, it is 
easy to prove the following: 

Corollary 4.11. Let # be a Borel probability measure, invariant 
under f and ergodic. Given e > 0, we can find l >  0 and a set A~, l such that: 

(i) #(A~,I) ~> 1 - e. 

(ii) A~. l is closed. 

For  all x e A~,~ we have: 

(i) If n, r n e Z  and v e E i ( f m x )  

l-le;.g.e~ I-I + Iml ~ ]Df"(f"x)v{ <. le;""e E(I"I + I~1) 

(ii) The spaces Ei(x) depend continuously on x when xeA~,~. 

(iii) Au(f"(x))>~l- le  ~l~l. 

(iv) The sets A ~,l can be chosen in such a way that A~,lc A~,I, if l '  > ! 
and A~ = I) l A~, l has full measure. 

Now we can go back to the proof of Theorem 2.4. 
If x e sup(/~r), we observe that we can find e, l such that x e supp(# ] A,j)" 

Hence, for every 6 > 0 

u(A~,I ~ n~(x))  > 0 

By the Poincar6 recurrence theorem, we can find Xo,..., x N such that 
f ( x l )  = xi+ 1, Xo e As c~ B~(x), and XN e As c~ B~(x). 

If 6 is small enough, we can take coordinate patches Ui around 
Xo,..., XN_ 1 as before in such a way that XN will be on the coordinate patch 
of Xo. 

Denote by 2N the coordinate representation of x N on the patch U0. 
Denote also E~(x)= Dqbi(cI~Zlx)Ej(clSZlx ) [that is, E~(x) is the coor- 

dinate., representation of the spaces corresponding to the j t h  Lyapunov 
exponent].  

Notice that Df~(x) E~(x)= Ej+ l( f(x)) .  
If the spaces Ej(x) depend continuously on xeA~,l ,  we see that E~ will 

depend continuously also and the modulus of continuity can be estimated 
from She modulus of continuity of the coordinate changes. 
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In particular, we can find operators n~(x) such that 

~,(x) E~(x) = El(O) 

H ~ ( x ) -  Idll ---< co(Ixl) 

with co(t) decreasing co(t)--, 0 as t ~ 0. 
We claim that, for 6 small enough, the pseudo-orbit given by 

0 if i 4: kN 
x = )~N i f  i = k M  

and the operator M defined by (Mt/)i=M~ lth i with M~ l=Df~_l (0 )  if 
iCkN;  Mi ln~(.~u) Dfi_l(O) if i=kN.  

Notice that we do not have upper bounds for M, but that Poincar6's 
recurrence theorem implies that there is a sequence of N's going to infinity. 
Hence, we will have to prove the estimates of Lemma 4.9 for N sufficiently 
large. 

We will assume, without loss of generality, that N is large enough that 

l e x p [ ( #  + - e ) N ]  < 1 

l e x p [ ( - / ~  - 2 e ) N ]  < 1 

where #+ is the smallest positive Lyapunov exponent and # is the 
negative Lyapunov exponent of smallest absolute value (heuristically, we 
are waiting long enough that the nonuniform hyperbolicity has had time to 
start acting). 

Clearly, [ [~f(x)-xl[  = [XN[,  which can be estimated by K6, where, as 
before, K is a constant that only depends on the supremum of the 
derivatives of the coordinate mappings. We have 

IIDYf- MII = ]]DfN 1(0) -- 7ZN(XN) DfN_ 1(0)11 

= [IDfN-1(0)1[ ~(12N]) 

which also tends to zero with 6. 
To estimate ( M - I )  i we study the equation ( M - I ) q = w  in a way 

quite similar to the proof of part (b) of Lemma 4.7. Notice that, by con- 
struction, M preserves the decomposition ;~ = O i):i with )0 = {vlvk e E~}. 

Proceeding as in the proof of Lemma 4.7(b), we find that the equation 

M ~ - ~ = w  
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admits the solutions [analogous to (4.8)-I given by 

i +  1 ' l i +  I - j - 

j=o (4.9) 

~_~ . . . L r  ,rr[ >3 u; ~ q > ? r ] i +  1 ~- M • I  "'~i+j'~i+l+j"i+l+jl 

j = 0  

To bound the products in the sums in (4.8), we use the inequalities in 
the definition of the set A~,t. We see that 

MkN MkN + t "'" M(k + 1)N 

= Dfku(O) . . .  Dfk + N(O) 

+ DUkN(O)". Df(k+ ~)x-1(0)  7~N-I()~N) Df(k+ 1)u(O) 

Hence the norm is bounded by 

/exp[(p + e ) ( N - 1 ) ] l e x p ( e N ) c o ( 6 ) + / e x p [ ( #  + e ) N ]  

We see that, by making N sufficiently large and 6 sufficiently small, we 
can ensure that this is bounded away from 1. Hence, the first series in (4.9) 
converges uniformly and we can bound the result by a constant times IFwll. 

An analogous argument works for the second sum. 
Applying Lemma 4.9, we conclude that there is a fixed point of 

close to zero that is an orbit that shadows the e pseudo-orbit x. 
We claim that this orbit has to be periodic of period N. To prove that, 

we recall that the fixed point of J f  was obtained by iterating the operator 
q~ = - ( M - I )  -1 ( ~ . - I ) +  I. Notice that ~- maps sequences of period N 
into sequences of period N and, using the formulas for the inverse of M -  L 
so does ( M -  I) 1. Hence q~ maps periodic sequences into periodic sequences 
and, since the starting sequence is periodic with period N, so should be the 
fixed point. 

To prove the claim about the Lyapunov exponents of the orbit, we use 
the characterization of Lyapunov exponents in terms of the spectrum 
of DYf. 

Notice that, by making N sufficiently large and 3 sufficiently small, we 
can guarantee that the fixed point of ~ would be as close as desired to 
zero. 

Since 

I l D ~ ( x ) - D ~ ( 0 ) I [  ~< [[x[I. I[D2~/I ~< Ilxll- lID2/II 

(notice that this bound does not depend on N), we have that the spectrum 

822/67/3-4-14 
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of D ~ ( x )  would be arbitrarily close-- in the sense of sets-- to  the spectrum 
of D ~ ( 0 ) .  By making 6 sufficiently small, we can approximate 
spec (D~(0 ) )  by spec(m). 

The argument to show that spec(M) is close to being circles around 
the Lyapunov exponents is very similar to the arguments we have already 
used. It suffices to show that if z is away from the Lyapunov exponents, we 
can solve the equation 

Mv - zv = w (4.10) 

If ~ < M] and ~ [ > [~i] denote the projection onto | exi< i zl Ei and | ea,> I zJ Ei, 
respectively, by using the analogue of (4.8) and the estimates analogous to 
those used to bound (4.9), we can show that, provided that N is sufficiently 
large and 6 sufficiently small, (4.10) has a solution if Izt is not a Lyapunov 
exponent. 

This finishes the proof of Theorem 2.4. | 

5. D I S C U S S I O N  

The above results justify Greene's criterion for the families for which 
there is a sharp transition between the parameter  values for which the 
Aubry-Mather  set is an invariant circle and those parameter  values for 
which it is a Cantor  set with nonzero Lyapunov exponent. 

Unfortunately, from our results it is impossible to distinguish a Cantor  
set with a zero Lyapunov exponent from a nonsmooth circle. Our results 
do not exclude either that, on an open interval of parameters, the neutral 
cases occur or the hyperbolic cases coexist with smooth tori in all the 
scales. 

For  the standard map and the golden mean rotation number there is 
a very convincing renormalization group picture (26'271 which suggests that 
at precisely one value of the parameter,  the Aubry-Mather  set of golden 
mean rotation number  is a nonsmooth invariant circle and that, for smaller 
values of the parameter,  the Aubry-Mather  set is a smooth circle, whereas 
for values bigger that the critical value, it is a hyperbolic set. 

This picture, due to McKay,  is based on a detalied study of the 
dynamics of a renormalization operator acting on the space of maps. 

The operator  has an attractive fixed p o i n t - - a i l e d  trivial since it can 
be computed explicitly and a nontrivial one which McKay computed 
quite convincingly. This nontrivial fixed point has a stable manifold of 
codimension 1 and a one-dimensional unstable manifold, one of whose 
sides ends on the trivial fixed point. 

If  a map under iteration of the renormalization group converges to the 
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trivial fixed point, the Aubry-Mather  Cantor set of golden mean rotation 
is a smooth circle. (This part of the picture and some generalizations have 
been justified rigorously in ref. 10.) If a map under repeated renormaliza- 
tion converges to the nontrivial fixed point, the Aubry-Mather  set of 
golden mean rotation is a not very smooth invariant circle. If it approaches 
the unstable manifold on the side opposite to the trivial fixed point, the 
Aubry-Mather  Cantor set of golden mean rotation is a hyperbolic Cantor 
set. 

The remarkably simple behavior of the standard map family can be 
justified with the help of this picture by realizing that the curve described 
by the standard map family crosses transversally the stable manifold of 
the nontrivial fixed point and is very close to the unstable manifold of the 
renormalization map. Hence, by the ,i-lemma, successive iterations of 
the renormalization group will make it converge to the unstable manifold. 

Notice also that for families sufficiently close to the standard map the 
2-1emma also applies and they will also converge to the unstable manifold. 
Tf we keep in mind that the effect of the renormalization group on a map 
is to make the space scale smaller and the time scale longer, the high itera- 
tions of the renormalization group capture phenomena that happen on 
small scales and for long times. The convergence onto the unstable 
manifold has the consequence that, for all families sufficiently close that the 
2-1emma applies, the long-term behavior at small scales is the same. 

Unfortunately, this very satisfactory picture has only a local nature. 
Refs. 14, 40, and 41 and our forthcoming paper (7) present evidence that the 
dynamics of the renormalization group operator has more complicated 
features than just a saddle point. These effects can be observed in 
standard-like families in which we substitute for the sine in the standard 
family a trigonometric polynomial of two coefficients. 

In that case, it seems quite possible that there is not a sharp transition 
between the smooth behavior and the hyperbolic one. For  those systems, 
Greene's criterion seems to work less efficiently than in the case of the 
standard map. Nevertheless, the discussion of our proofs suggests that 
Greene's criterion can be used very effectively and very safely as a negative 
criterion for the nonexistence of smooth invariant circles. When the 
residues are reasonably big for a periodic orbit of high period, we can be 
quite confident that, for this parameter value, there is no smooth invariant 
circle. Unfortunately, when the renormalization group picture does not 
hold, the values computed with different orbits do not stack up as predic- 
tably as in the case of the standard mapping and it does not seem possible 
to extrapolate. (7' 14,40,41) 
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